Empirical Seismic Vulnerability and Resilience Assessment of Building Clusters
Author | : Si-Qi Li |
Publisher | : Elsevier |
Total Pages | : 623 |
Release | : 2024-03-18 |
ISBN-10 | : 9780443216398 |
ISBN-13 | : 0443216398 |
Rating | : 4/5 (98 Downloads) |
Book excerpt: Empirical Seismic Vulnerability and Resilience Assessment of Building Clusters analyzes the seismic vulnerability analysis of 10 types of structures and studies and discusses the evaluation of structural damage using risk analysis and shaking table test methods. The book focuses on seismic vulnerabilities but does not consider the contribution of typical empirical structural seismic damage data to structural vulnerability assessment and prediction. In other words, the empirical data's role in regional seismic damage is omitted. It is recognized that the impact of earthquakes on large-scale areas is extensive, not only on a building but also on a group of buildings. This book is based on the research background of typical seismic damage characteristics of 11 types of engineering structures and is based on a large volume of pictures and data investigated by the author on-site. Characteristics of the vulnerability of various structures are analyzed, and measures and methods to improve the vulnerability of various structures are provided. Combined with probability risk, reliability, machine learning, and other means, vulnerability prediction and evaluation models are established, respectively, and the rationality of the models is verified by hundreds of on-site earthquake damage survey data. The above research and highlights are unique to this book, making it a key resource for academic researchers and practicing engineers in civil and seismic engineering, senior undergraduates, and graduate students. Increases engineers' theoretical and practical knowledge of field investigationand improves their efficiency and quality in future workIncludes the analyses of hundreds of earthquake field survey dataProvides a vulnerability assessment of diversified structural experience