X-ray and Neutron Reflectivity
Author | : Jean Daillant |
Publisher | : Springer |
Total Pages | : 360 |
Release | : 2008-11-19 |
ISBN-10 | : 9783540885887 |
ISBN-13 | : 3540885889 |
Rating | : 4/5 (87 Downloads) |
Book excerpt: ways in which the magnetic interaction between neutrons and magnetic moments can yield information on the magnetization densities of thin ?lms and multilayers. I commend the organizers for having organized a group of expert lecturers to present this subject in a detailed but clear fashion, as the importance of the subject deserves. Argonne, IL S. K. Sinha Contents 1 The Interaction of X-Rays (and Neutrons) with Matter . . . . . . . . . . . . . . 1 F. de Bergevin 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Generalities and De?nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 From the Scattering by an Object to the Propagation in a Medium . 14 1. 4 X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 5 X-Rays: Anisotropic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1. A Appendix: the Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2 Statistical Aspects of Wave Scattering at Rough Surfaces . . . . . . . . . . . . 59 A. Sentenac and J. Daillant 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2. 2 Description of Randomly Rough Surfaces . . . . . . . . . . . . . . . . . . . . . 60 2. 3 Description of a Surface Scattering Experiment, Coherence Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2. 4 Statistical Formulation of the Diffraction Problem . . . . . . . . . . . . . . 72 2. 5 Statistical Formulation of the Scattered Intensity Under the Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3 Specular Re?ectivity from Smooth and Rough Surfaces . . . . . . . . . . . . . 85 A. Gibaud and G. Vignaud 3. 1 The Re?ected Intensity from an Ideally Flat Surface . . . . . . . . . . . . 85 3. 2 X-Ray Re?ectivity in Strati?ed Media . . . . . . . . . . . . . . . . . . . . . . . . 98 3. 3 From Dynamical to Kinematical Theory . . . . . . . . . . . . . . . . . . . . . . 107 3. 4 In?uence of the Roughness on the Matrix Coef?cients . . . . . . . . . . 111 3. A Appendix: The Treatment of Roughness in Specular Re?ectivity . . 113 3. B Appendix: Inversion of re?ectivity data . . . . . . . . . . . . . . . . . . . . . . .