Feedstocks for Sustainable Biodiesel Production
Author | : Chinwe P. Okonkwo |
Publisher | : John Wiley & Sons |
Total Pages | : 468 |
Release | : 2024-08-28 |
ISBN-10 | : 9781394258086 |
ISBN-13 | : 1394258089 |
Rating | : 4/5 (86 Downloads) |
Book excerpt: Complete and practical guidance on using biodegradable feedstocks for biodiesel production Feedstocks for Sustainable Biodiesel Production: Characterization, Selection, and Optimization helps readers understand the advantages, challenges, and potential of different biodegradable feedstock options that can be used in biodiesel production, covering methods of feedstock sourcing extraction, environmental concerns, cost-benefit aspects, practical applications, and more. Specific biodegradable feedstocks covered in this text include chrysobalamus icaco, cussonia bateri, elaeis guineensis, waste cooking oils, moringa oleifera, jatropha curcas, chlorophyceae (unicellular green algae), fucus vesiculosus (micro algae), afzelia africana, cucurbita pepo, hura crepitans, cuyperus esculentus, colocynthus vulgaris, and others. This book explores topics such as: Key characteristics of biodiesel, using biodiesel as an alternative to petroleum diesel, and a review of the latest industry standards, practices, and trends Basis of the selection of specific (including nonedible) feedstocks for different applications and the addition of new, innovative feedstocks in recent years Specific sustainability benefits of nonedible feedstocks, which can be grown on abandoned land where they do not compete with food crops Government policies aimed at finding fossil fuel alternatives which will increase biodegradable feedstock adoption Experimental and predictive modeling of biodiesel produced from novel feedstocks using computational intelligence techniques Providing both core foundational knowledge on the subject as well as insight on how to practically transition away from fossil fuels, this book is an essential reference for engineering professionals with a specific interest in biodiesel production, sustainability, renewable energy, and environmental conservation.